Linking Genotype to Phenotype: Studying Genetic Risk of Multiple Sclerosis

After more than a decade of international collaboration, the Human Genome Project was finally completed in 2003, paving path to the subsequent exponential growth in our understanding of individual genetic variation and its effect on complex human diseases. Finding clinically significant associations between genetic variation and disease required analyzing massive data sets from large cohorts of individuals. Collecting genetic data presented a great early challenge, as initial sequencing techniques were slow, expensive and inefficient [1]. Fortunately, technology rapidly progressed, and by 2013, next-generation sequencing (NGS) became available [2]. NGS allows for rapid, accurate, and high-throughput sequencing of entire genomes, making large scale genetic studies feasible.