Non-metallic Particles Manipulation in Liquid Metals During Electromagnetic Processing

Abstract
Research in manipulation of non-metallic particles in a liquid metal by using an electromagnetic (EM) field is promoted by both the requirement of more efficient materials design and the development of cost-effective electromagnetic apparatus. The particles of sub/micrometer sizes can be agglomorated, segregated, aligned and/ or removed by applying a suitable EM field during liquid metal processing. The effciency and applicability depends highly on the nature of the particles and the difference from the liquid metal matrix. In the present paper, the fundaments/physics of non-metallic particles manipulation by EM processing are discussed and some potential application possiblities in industry are proposed. To improve the efficiency of materials manipulation or obtain a metallic-based materials with required properties has been of broad interest. One of the topics by using an electromagnetic (EM) field concerns the manipulation/removal of non-metallic solid particles in a liquid metal and a variety of related processes using a static electromagnetic field and/or alternating electromagnetic field have been developed. Among the processes, a range of electromagnetic effects have been realized which play key roles in determining the engineering of their applications. The physics of these effects are discussed in the following sections by considering different types of EM fields. In order to generate effective electromagnetic effects, the difference in physical/electromagnetic properties between the solid particles and the liquid metal needs to be significant [5,6]. As one of the consequences, the existence of the solid particles will directly influence the physical/chemical properties of the metal after solidification.